
ECOM Developer’s API Reference Guide

Professional Products Group 1

of EControls, Inc.

ECOM Developer’s API Reference Guide

Library Overview:

The functions provided by the ECOM library (ecommlib.dll) are exported

using the __stdcall calling convention which is the convention used by

the majority of the Microsoft Windows API. This means that any

programming language and environment that can make calls to the

Windows API can also use the ECOM library.

Tip: For programming languages or compilers that cannot automatically

load the library functions, try searching for examples of using the

Windows Functions LoadLibrary and GetProcAddress for your desired

programming language.

Most of the library functions expect a HANDLE, which represents a single

connected/opened ECOM device, as their first parameter. In order to

obtain a HANDLE to be passed to the library functions, you must first call

CANOpen for the respective ECOM device. Make sure to call

CloseDevice once for each successful call to CANOpen, as each ECOM

device can only be opened by one process at a time.

Most functions, besides the device open functions, return a single BYTE

value that represents the function’s return status code. For a complete

listing of all possible return codes along with detailed descriptions, refer to

the defined codes in the “ecommlib.h” file. Additionally, the function

GetFriendlyErrorMessage can be called from within code to get a text

based description of the error. In all functions, the BYTE data type

represents an unsigned 8-bit value, and the DWORD and ULONG data types

represent an unsigned 32-bit value.

This document groups all the library functions according to their intended

purpose, as follows:

• ECOM Initialization

• Transmission and reception of CAN messages

• Transmission and reception of serial data

• Searching and enumerating devices

• Miscellaneous Functions

ECOM Developer’s API Reference Guide

Professional Products Group 2

of EControls, Inc.

ECOM Initialization

Function CANOpen:

 Declaration:

HANDLE CANOpen(ULONG SerialNumber, BYTE BaudRate, BYTE

*ErrorReturnCode)

 Description:

This function is used to initiate an ECOM device in CAN

mode. To open the first available device, pass 0 for the

SerialNumber parameter, otherwise pass the desired device

serial number. Each device has a unique serial number that

is printed on the underside of the ECOM.

The function will initialize the ECOM device on the CAN bus

with the respective baud rate. If an error occurs, a NULL

value will be returned by the function. On successful

connection, it will return a HANDLE to the ECOM device that

can be used for all respective function calls. The HANDLE

must be closed with the CloseDevice function once for every

successful call to CANOpen.

The following are the allowed values to pass for BaudRate:

#define CAN_BAUD_250K 0

#define CAN_BAUD_500K 1

#define CAN_BAUD_1MB 2

#define CAN_BAUD_125K 3

ErrorReturnCode receives a reference to the return

ErrorCode upon the functions return. This parameter can be

passed a NULL reference if you are not interested in the

return error code.

Function CANOpenFiltered

 Declaration:

HANDLE CANOpenFiltered(ULONG SerialNumber, BYTE BaudRate,

DWORD AcceptanceCode, DWORD Acceptancemask, BYTE

*ErrorReturnCode)

 Description:

This function behaves exactly like CANOpen except that it

allows a hardware CAN receive filter to be applied in the

AcceptanceCode and AcceptanceMask parameters. See the

Philips SJA1000 CAN transceiver data sheet for information

on how the acceptance filter is defined.

ECOM Developer’s API Reference Guide

Professional Products Group 3

of EControls, Inc.

Function SerialOpen

 Declaration:

HANDLE SerialOpen(USHORT SerialNumber, BYTE BaudRate, BYTE

*ErrorReturnCode);

 Description:

This function behaves exactly like CANOpen except that

instead opens the ECOM as a serial device and initiates

communication using the serial port. The serial

communication lines ARE NOT RS232, but rather 5V TTL lines;

therefore, they cannot be used to communicate directly with

an RS-232 port on a PC. The serial feature is intended to

communicate directly with the standard hardware on most

microcontrollers without the additional cost of having to

add an RS-232 transceiver.

Each ECOM device can be connected as either CAN or Serial,

but not both! Passing the HANDLE returned by SerialOpen to

a CAN based function will return an error code.

The following are the allowed values to pass for BaudRate:

#define SERIAL_BAUD_2400 0

#define SERIAL_BAUD_4800 1

#define SERIAL_BAUD_9600 2

#define SERIAL_BAUD_19200 3

#define SERIAL_BAUD_28800 4

#define SERIAL_BAUD_38400 5

#define SERIAL_BAUD_57600 6

Function CloseDevice

 Declaration:

BYTE CloseDevice(HANDLE DeviceHandle)

 Description:

This function closes an ECOM device HANDLE that was

obtained using CANOpen, CANOpenFiltered, or SerialOpen.

For devices opened as CAN, this function will also

disconnect the device from the CAN bus. CloseDevice must be

called once for every HANDLE that is obtained or else the

device may be left open and another program will not be

able to use it. Failure to call CloseDevice for every

HANDLE obtained will also result in a memory leak until the

DLL library is unloaded.

ECOM Developer’s API Reference Guide

Professional Products Group 4

of EControls, Inc.

Function CANSetupDevice

 Declaration:

BYTE CANSetupDevice(HANDLE DeviceHandle, BYTE SetupCommand,

BYTE SetupProperty)

 Description:

This function is used to alter the behavior of the

CANTransmitMessage and CANTransmitMessageEx functions.

SetupCommand should be set to zero (CAN_CMD_TRANSMIT) for

all calls to this function - currently the only supported

SetupCommand is CAN_CMD_TRANSMIT.

For the CAN_CMD_TRANSMIT SetupCommand, the following are

valid values for SetupProperty:

 #define CAN_PROPERTY_ASYNC 0

#define CAN_PROPERTY_SYNC 1

CAN_PROPERTY_ASYNC: Tells the CANTransmit functions to

behave asynchronously, this means that calls to CANTransmit

can return before the message is actually transmitted on

the CAN bus.

CAN_PROPERTY_SYNC: This property tells the CANTransmit

functions to wait indefinitely for the ECOM device to send

the message before returning back to the caller.

It is recommended that users use the CAN_PROPERTY_ASYNC

method. The default after calling CANOpen is synchronous

mode (CAN_PROPERTY_SYNC), so this function must be called

to switch operation to asynchronous mode.

ECOM Developer’s API Reference Guide

Professional Products Group 5

of EControls, Inc.

Transmission and Reception of CAN Messages

Function CANTransmitMessage:

 Declaration:

BYTE CANTransmitMessage(HANDLE cdev, SFFMessage *message)

 Description:

This function will transmit a CAN message in Short Frame

Format (SFF) 11-bit mode. Depending on the configuration,

the message may be transfered in asynchronous or

synchronous mode (See CANSetupDevice for explanation). In

asynchronous mode the calling program will immediately be

given back control but no error detection or indication of

whether the message was sent successfully will be given.

In synchronous mode, the function will wait until the ECOM

device indicates that the message was successfully sent (or

an error indicating otherwise will be returned). In both

modes, the CAN hardware will be put in automatic retransmit

mode, so that message will be retried until it is sent out

on the bus.

 Required Structure:

typedef struct

{

 BYTE IDH;

 BYTE IDL;

 BYTE Data[8];

 BYTE Options; //BIT 6 = remote frame bit

 //BIT 4 = self-reception bit

 BYTE DataLength;

 DWORD TimeStamp; //Timestamp with 64us resolution

} SFFMessage;

Fill this structure with the desired 11-bit CAN data. The

upper 5 bits of IDH are not used and ignored since the

message is only 11-bits. DataLength must be set to a valid

CAN value between 0 and 8, and the corresponding data

should be set as well. For transmit messages, the

TimeStamp field has no meaning. For receive messages, the

TimeStamp will be set to a value representing the number of

64us ticks that have passed since the call to CANOpen or

CANOpenFiltered. The timestamp is a hardware timestamp

captured during the CAN receive interrupt. To enable

transmission of remote frame, set bit 6 (base 0) of the

Options flag. To enable hardware based self-reception, set

bit 4 of the Options flag. Self-reception allows for the

reception of all self-transmitted messages and it is

hardware based - a receive interrupt is generated and

received message is processed just like other incoming

packets.

ECOM Developer’s API Reference Guide

Professional Products Group 6

of EControls, Inc.

Function CANTransmitMessageEx:

 Declaration:

BYTE CANTransmitMessageEx(HANDLE cdev, EFFMessage *message)

 Description:

This function will transmit a CAN message in Extended Frame

Format (EFF) 29-bit mode. CANTransmitEx behaves otherwise

in the exact manner as CANTransmit.

 Required Structure:

typedef struct

{

 DWORD ID; //29-bit ID, upper 3 bits are ignored

 BYTE data[8];

 BYTE options; //BIT 6 = remote frame bit

 // BIT 4 = self-reception

 BYTE DataLength;

 DWORD TimeStamp; //Timestamp with 64us resolution

} EFFMessage;

Fill this structure with the desired 29-bit CAN message

data. Aside from the ID field being 29-bits, all other

fields have the same meaning as in the SFFMessage structure.

Function CANReceiveMessageEx:

 Declaration:

BYTE CANReceiveMessageEx(HANDLE cdev, EFFMessage *message)

 Description:

This function will read one message from the current EFF

(29-bit) receive buffer.

On success, the function will fill the message structure

with the oldest CAN packet in the EFF buffer and return 0.

It will return CAN_NO_RX_MESSAGES if there are no messages

in the EFF buffer. See the explanation of

CANTransmitMessageEx for a description of the EFFMessage

structure.

To retrieve how many messages are currently in the EFF

buffer, the function GetQueueSize can be called with

CAN_GET_EFF_SIZE passed for the flag.

ECOM Developer’s API Reference Guide

Professional Products Group 7

of EControls, Inc.

Function CANReceiveMessage:

 Declaration:

BYTE CANReceiveMessage(HANDLE cdev, SFFMessage *message)

 Description:

This function will read one message from the current SFF

(11-bit) receive buffer.

On success, the function will fill the message structure

with the oldest CAN packet in the SFF buffer and return 0.

It will return CAN_NO_RX_MESSAGES if there are no messages

in the SFF buffer. See the explanation of

CANTransmitMessage for a description of the SFFMessage

structure.

To retrieve how many messages are currently in the SFF

buffer, the function GetQueueSize can be called with

CAN_GET_SFF_SIZE passed for the flag.

ECOM Developer’s API Reference Guide

Professional Products Group 8

of EControls, Inc.

Transmission and Reception of Serial Data

Function SerialWrite:

 Declaration:

BYTE SerialWrite(HANDLE DeviceHandle, BYTE *DataBuffer,

LONG *Length);

 Description:

This function will write a buffer out the serial port of an

ECOM device that has been opened using SerialOpen.

Pass the array of data to send in DataBuffer and pass the

length of the data array in Length. On success, the

function will return 0 and will set Length to the number of

data bytes that were actually sent. Even if there is a

non-zero (error) return code, Length will have been set and

some bytes may have still been sent.

Function SerialRead:

 Declaration:

BYTE SerialRead(HANDLE DeviceHandle, BYTE *DataBuffer, LONG

*BufferLength);

 Description:

This function will read data that has been received by the

serial port for an ECOM device that has been opened using

SerialOpen.

Pass a BYTE array that will receive that data in DataBuffer

and pass the length of the data array in BufferLength. On

success, the function will return 0 and will set Length to

the number of data bytes that were actually filled in the

buffer.

ECOM Developer’s API Reference Guide

Professional Products Group 9

of EControls, Inc.

Searching and Enumerating Devices

 The functions StartDeviceSearch, FindNextDevice, and CloseDeviceSearch are

used to list all ECOM devices that are connected to the respective computer. To perform

a search, call StartDeviceSearch to obtain a DEV_SEARCH_HANDLE. Then call

FindNextDevice using the handle until FindNextDevice reports that there are no more

devices left to retrieve. Each successful call to FindNextDevice will fill a DeviceInfo

structure which contains information about the respective device. When done listing

devices, make sure to call CloseDeviceSearch with the respective handle to properly

clean-up and free memory used by the search.

Below is an example that will list all ECOM devices that are attached to the computer.

#include "ecommlib.h" //Include definitions for constants and functions used by the ECOM

int ListECOMDevices()

{

 //structure that will be used to retrieve information about each device

 DeviceInfo deviceInfoStruct;

 //Obtain a search handle that can be used to retrieve ALL connected ECOM devices.

 DEV_SEARCH_HANDLE searchHandle = StartDeviceSearch(ECOM_FIND_ALL);

 //Check for errors

 if (searchHandle == NULL)

 {

 printf("Unexpected error allocating memory for device search\n");

 return -1;

 }

 //Now retrieve each attached device until there are no more left

 //When the searching is done, it will return ECI_NO_MORE_DEVICES

 int deviceCount = 0;

 while(FindNextDevice(searchHandle, &deviceInfoStruct) == ECI_NO_ERROR)

 {

 //Print the serial number of the found device

 printf("Device Found: %d\n", deviceInfoStruct.SerialNumber);

 deviceCount++; //keep count of the number connected

 }

 printf("Found %d devices\n", deviceCount);

 //Make sure to close the search handle to free up memory used.

 CloseDeviceSearch(searchHandle);

 return deviceCount; //return the number of attached devices

}

ECOM Developer’s API Reference Guide

Professional Products Group 10

of EControls, Inc.

Function StartDeviceSearch:

 Declaration:

DEV_SEARCH_HANDLE StartDeviceSearch(BYTE Flag);

 Description:

This function is used to start a device search that can be

used to list every device that is attached to the current

computer.

To start a search, create a handle by passing the type of

search (FIND_ALL, FIND_OPEN, or FIND_UNOPEN) you wish to

perform in the Flag parameter of StartDeviceSearch. Then

call FindNextDevice repeatedly with the respective

DEV_SEARCH_HANDLE and each call to FindNextDevice will

return the next connected device until no more are left.

When all have been listed, FindNextDevice will return

ECI_NO_MORE_DEVICES.

Function CloseDeviceSearch:

 Declaration:

BYTE CloseDeviceSearch(DEV_SEARCH_HANDLE SearchHandle);

 Description:

This function is used to close a device search that has

been started using the StartDeviceSearch function. This

function must be called once for each DEV_SEARCH_HANDLE

obtained using StartDeviceSearch. It is used to free up

resources and memory used by the device search functions.

ECOM Developer’s API Reference Guide

Professional Products Group 11

of EControls, Inc.

Function FindNextDevice:

 Declaration:

BYTE FindNextDevice(DEV_SEARCH_HANDLE SearchHandle,

DeviceInfo *deviceInfo);

 Description:

This function is used to retrieve information about each

ECOM device that is attached to the computer.

Call this function repeatedly for a given DEV_SEARCH_HANDLE

until the function returns ECI_NO_MORE_DEVICES. Each call

that returns ECI_NO_ERROR will fill the DeviceInfo

structure with information about the respective device.

 Required Structure:

typedef struct

{

 ULONG SerialNumber; //Device serial number

 BYTE CANOpen; //is device opened as CAN

 BYTE SEROpen; //is device opened as Serial

 BYTE _reserved; //reserved for future use

 BYTE SyncCANTx; //always FALSE – Legacy support

 HANDLE DeviceHandle; //always NULL when returned by

this function – Legacy support, it used to return an opened

device’s handle, but this was not valid across multiple

processes, so it has been removed altogether to avoid

confusion. Each process must keep track of its open device

HANDLEs

 BYTE reserved[10]; //reserved for future use

} DeviceInfo;

ECOM Developer’s API Reference Guide

Professional Products Group 12

of EControls, Inc.

Miscellaneous Functions

Function GetErrorMessage:

 Declaration:

BYTE GetErrorMessage(HANDLE DeviceHandle, ErrorMessage

*ErrorMessage);

 Description:

This function will read one error message from the current

error message buffer.

On success, the function will fill the message structure

with the oldest error frame in the buffer and return 0. It

will return CAN_NO_ERROR_MESSAGES if there are no messages

in the error buffer.

To retrieve how many messages are currently in the error

buffer, the function GetQueueSize can be called with

CAN_GET_ERROR_SIZE passed for the flag.

 Required Structure:

typedef struct

{

unsigned int ErrorFIFOSize; //number of remaining

error messages

 BYTE ErrorCode; //See “ErrorMessage Control Bytes”

in ecommlib.h for more info

 BYTE ErrorData;

 double Timestamp; //Timestamp when error was

captured

 BYTE reserved[2]; //Reserved for future use

} ErrorMessage;

ECOM Developer’s API Reference Guide

Professional Products Group 13

of EControls, Inc.

Function GetDeviceInfo:

 Declaration:

BYTE GetDeviceInfo(HANDLE DeviceHandle, DeviceInfo

*deviceInfo);

 Description:

This function will fill the DeviceInfo structure with

information about the device that is referenced by

DeviceHandle. See the FindNextDevice function for a

description of the DeviceInfo structure.

Function SetCallbackFunction:

 Declaration:

BYTE SetCallbackFunction(HANDLE DeviceHandle,

pMessageHandler *ReceiveCallback, void *UserData);

 Description:

This function assigns a “callback function” that will be

executed by the DLL everytime a new CAN, Serial, or Error

message is received.

Callback Declaration:

typedef BYTE (_stdcall *pMessageHandler)(HANDLE

DeviceHandle, BYTE Flag, DWORD FlagInfo, void* UserData);

Callback Description:

The assigned callback function is executed everytime a new

CAN, Serial, or Error message is received. The Flag

parameter will be set to CAN_EFF_MESSAGES, CAN_SFF_MESSAGES,

CAN_ERR_MESSAGES, or SER_BYTES_RECEIVED to indicate which

type of message was just received and the FlagInfo

parameter will indicate how many messages are in the

respective message buffer. UserData is the same value that

was set in the SetCallbackFunction call.

Warning: The ReceiveCallback function is called in the

context of a unique and high-priority thread; therefore,

you must ensure that there are no concurrency issues

between data that is accessed within the callback and the

rest of your application. Users who do not understand

threads and critical sections should not use this function.

Also, ensure that the callback function is executed quickly

with no waiting or data overruns can occur.

ECOM Developer’s API Reference Guide

Professional Products Group 14

of EControls, Inc.

Function GetQueueSize:

 Declaration:

int GetQueueSize(HANDLE DeviceHandle, BYTE Flag);

 Description:

Call this function with a valid DeviceHandle and with the

Flag parameter set to one of the following values in order

to retrieve information about the devices buffers/queues.

The respective value is returned or -1 if an error occurs.

FOR DEVICES OPENED AS CAN

CAN_GET_EFF_SIZE //Get message count in EFF buffer

CAN_GET_MAX_EFF_SIZE //Get max size of the EFF buffer

 CAN_GET_SFF_SIZE //Get message count in SFF buffer

 CAN_GET_MAX_SFF_SIZE //Get max size of the SFF buffer

CAN_GET_ERROR_SIZE //Get message count in error buffer

CAN_GET_MAX_ERROR_SIZE //Get max size of error buffer

CAN_GET_TX_SIZE //Get number of messages waiting to

be transmitted (both SFF and EFF)

CAN_GET_MAX_TX_SIZE //Get max size of transmit buffer

FOR DEVICES OPENED AS SERIAL

SER_GET_RX_SIZE //Get byte count in RX buffer

SER_GET_MAX_RX_SIZE //Get max byte count of RX buffer

SER_GET_TX_SIZE //Get number of bytes waiting to be

transmitted

SER_GET_MAX_TX_SIZE //Get max size of transmit buffer

Function GetFriendlyErrorMessage:

 Declaration:

void GetFriendlyErrorMessage(BYTE ErrorCode, char

*ErrorString, int ErrorStringSize);

 Description:

Use this function to retrieve a string based error

description for any error code that is returned by any of

the functions in this DLL. Pass a character array for

ErrorString and the length of the array in ErrorStringSize.

The function will then fill a description into ErrorString

that will be NULL terminated to indicate the end of the

string.

